SCANNING IPV6 NETWORKS

ABOUT ME

o Erik Bergenholtz

 $_{\odot}$ Ph.D. student in computer science at BTH since October 2017

- Currently focusing on autonomous malware analysis
- Graduated from the M.Sc. in Engineering Computer Security programme at BTH in 2016

o erik.bergenholtz@bth.se (ebz@bth.se)

ABOUT IPV6 RECONNAISSANCE

 $_{\odot}$ Used in security testing, tries to answer questions like

- What hosts are on the network?
- What are their roles?
- What operating systems and services are running?

 \circ IPv4 scanning methods are infeasible

 $_{\odot}$ IPv6 address space is 2^{96} times larger than IPv4

<code>omasscan</code> can scan all of IPv4 in 5 minutes

• One IPv6 subnet would take 40000 years to scan

ABOUT IPV6 RECONNAISSANCE

 $_{\odot}$ Used in security testing, tries to answer questions like

- What hosts are on the network?
- What are their roles?
- What operating systems and services are running?

 $_{\odot}$ IPv4 scanning methods are infeasible

o IPv6 address space is 2⁹⁶ times larger than IPv4 omasscan can scan all of IPv4 in 5 minutes

• One IPv6 subnet would take 40000 years to scan

PIECES OF THE PUZZLE

Multicast ICMP	Error Detection	Anycast ICMP
Traceroute	SNMP	Fake RA
Pattern Inference	Eavesdropping	Eavesdropping P2P
Eavesdropping SLAAC	Search Engines	Lists of known hosts
CAIDA	DNS Lookup	Reverse DNS
mDNS	DNS Zone Transfer	Routing Information
Routing protocols	Neighbor cache	Server logs
Client logs	Host configuration	Temporary Addresses
EUI-64 addresses	Low-byte addresses	IPv4 based addresses
Service port addresses	Wordy addresses	

PIECES OF THE PUZZLE

IDv6

LEKNISKA.	
N. S. S.	
BTH. N	

mechanics	Multicast ICMP	Error Detection	Anycast ICMP	
	Traceroute	SNMP	Fake RA	Listening to
	Pattern Inference	Eavesdropping	Eavesdropping P2P	network
	Eavesdropping SLAAC	Search Engines	Lists of known hosts	
Infer	CAIDA	DNS Lookup	Reverse DNS	•
addressing	mDNS	DNS Zone Transfer	Routing Information	
samples	Routing protocols	Neighbor cache	Server logs	DNS
samples	Client logs	Host configuration	Temporary Addresses	
	EUI-64 addresses	Low-byte addresses	IPv4 based addresses	
	Service port addresses	Wordy addresses		-
Assumed addressin	d ng			
Schemes				

 $| \Phi \Phi |$

 (\downarrow)

PIECES OF THE PUZZLE

Multicast ICMP	Error Detection	Anycast ICMP
Traceroute	SNMP	Fake RA
Pattern Inference	Eavesdropping	Eavesdropping P2P
Eavesdropping SLAAC	Search Engines	Lists of known hosts
CAIDA	DNS Lookup	Reverse DNS
mDNS	DNS Zone Transfer	Routing Information
Routing protocols	Neighbor cache	Server logs
Client logs	Host configuration	Temporary Addresses
EUI-64 addresses	Low-byte addresses	IPv4 based addresses
Service port addresses	Wordy addresses	

DEHCP – SOLVING PART OF THE PUZZLE

○ Delimit DHCP

 $_{\odot}$ Attempts decreasing the search space

- $_{\odot}$ Exploits clustering of addresses assigned via DHCP
- $_{\odot}$ Binary search for limits of used part of DHCP pool

DEHCP - PING WINDOW

DEHCP – SEQUENTIAL SCAN

EXPERIMENTS

- $_{\odot}$ Three experiments were performed
- $_{\odot}$ Simulation to find optimal window size
- Emulation in controlled environment
- $_{\odot}$ Scanning the BTH IPv6 and IPv4 networks
- $_{\odot}$ Emulation and scanning of live networks compared four methods
 - **DeHCP with** ICMP and nmap probes
 - Multicast ICMPv6
 - Multicast ICMPv6 with Hop-by-Hop header
 - Eavesdropping

SIMULATION

1M addresses in "network"
500k address DHCP pool in middle
Density ranges from 0.001% up to 100%
Window sizes 1-10, 50, 500, 5000

EMULATION

o 430 computers in total (13 physical, 13*32 VMs, 1 DHCP server)
o Brief port scan at least once per 90 minutes to generate traffic

	Global probe source		Link-local probe source	
	Link-local (F/T)	Global (F/T)	Link-local (F/T)	Global (F/T)
Eavesdropping	430/430	430/430	430/430	430/430
Multicast ICMP	0/430	430/430	430/430	0/430
Hop-by-Hop ICMP	0/430	430/430	430/430	0/430
DeHCPv6 (ICMP)	0/430	429*/430	0/430	429*/430
DeHCPv6 (nmap)	0/430	429*/430	0/430	429*/430

LIVE SCAN SET UP

 \circ Four networks scanned:

- Wired IPv6 (/48)
- Wireless IPv6 (/64)
- Wired IPv4 (/19)
- Wireless IPv4 (/22)

Script set up to dump neighbor cache and ARP table

 $_{\odot}$ Scans were performed across multiple VLANs

 $_{\odot}\,\text{DeHCP}$ was restarted once per hour

RESULTS OF LIVE SCAN – IPV6

	Wired		WiFi	
	Link-local (F/T)	Global (F/T)	Link-local (F/T)	Global (F/T)
Eavesdropping	29/1290	37/4483	247/249	235/486
Multicast ICMP	5/1290	40/4483	2/249	83/486
Hop-by-Hop ICMP	0/1290	1/4483	0/249	1/486
DeHCPv6 (ICMP)	0/1290	1/4483	0/249	1/486
DeHCPv6 (nmap)	0/1290	0/4483	0/249	1/486

RESULTS OF LIVE SCAN – IPV4

	Wired	WiFi
DeHCPv4 (ICMP)	122/1449	33/226
DeHCPv4 (nmap)	119/1449	51/226

THOUGHTS ON DEHCP

Simulation and emulation shows promise DeHCP

 $\odot\,\textsc{Doesn't}\,\textsc{perform}$ as well without DHCP as expected

 $\odot\,\textsc{Doesn't}$ solve the whole puzzle, but maybe a part of it

o https://git.cse.bth.se/erikphd/v6scan

• Feedback and results are appreciated!

