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Modern Connected Society

The digital ecosystem is getting increasingly
ubiquitous and pervasive

Growing complexity due to size,
distribution, and heterogeneity

Growing criticality due to safety-related
functionalities (e-health, transport, etc.)
and evolving cyber-security threats
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Security Operations Centers
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Issues

Too much information for few control room operators

* Operators overwhelmed by signals: events, states, diagnostics, alarms,
warnings, etc.

* Software separation between cyber-security and physical security
* SIEM — Security Information & Event Management

* PSIM — Physical Security Information Management)

* Many false alarms and nuisance alarms (> 30% => failure)
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Information fusion

A priori information sources
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FLAMMINI F., Pappalardo A, Vittorini V (2013). Challenges and Emerging Paradigms for Augmented Surveillance. Effective Surveillance for Homeland Security: Balancing
Technology and Social Issues. p. 169-198, BOCA RATON, FL: Chapman & Hall/CRC Taylor & Francis Group, ISBN/ISSN: 9781439883242, doi: 10.1201/b14839-11
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From smart-systems to autonomous systems
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Cyber-Physical Threat Detection
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Flammini F, Marrone S, Rodriguez R J, Nardone R, Vittorini V (2015). On synergies of cyber and physical security modelling in vulnerability assessment of railway systems.
COMPUTERS & ELECTRICAL ENGINEERING, p. 275-285, ISSN: 0045-7906, doi: doi:10.1016/j.compeleceng.2015.07.011
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Example scenario (1/2)
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Example scenario (2/2)
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STEP | Description

System | SPDnorm | Level

SPD level decreases.

2 WSN_1: Bad mouthing attack

WSN_2: Encryption 64 bits

Smart Camera: Messaging - no protection
MDW _IDS: Normal

In WSN_1 a bad mouthing attack has occurred. The middleware is informed that an attack is
occurring and it sends a command to the smart camera to activate its security mechanisms. The

State_03

The smart camera improves its SPD functionality and SPD level increases.
WSN_1: Bad mouthing attack

3 WSN_2: Encryption 64 bits

Smart Camera: Messaging - Authentication & Integrity

MDW _IDS: Normal

a'a

State_19 0,3

WV

SHIELD

W/

Delli Priscoli F, Di Giorgio A, Esposito M, Fiaschetti A, Flammini F, Mignanti S, Pragliola C
(2017). Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD. INTERNATIONAL

Linnaus UniverSity JOURNAL OF CRITICAL COMPUTER-BASED SYSTEMS, p. 138-170, ISSN: 1757-8779




DETECT

Decision Triggering Event Composer & Tracker
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FLAMMINI F., Mazzocca N, Pappalardo A, Pragliola C, Vittorini V (2011). Augmenting surveillance system capabilities by exploiting event correlation and
distributed attack detection. In: Availability, Reliability and Security for Business, Enterprise and Health Information Systems. Vienna, Austria, 22-26 August
2011, BERLIN HEIDELBERG: Springer-Verlag, vol. 6908, p. 191-204, ISBN/ISSN: 978-364223299-2, doi: 10.1007/978-3-642-23300-5_15
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The DETECT framework architecture
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Event Trees

EDL based on the Snoop event algebra,
considering the following operators:
OR, AND, ANY, SEQ

Example Event Tree: (E1 AND E2) OR E3
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non determinism PN
} =

First solution:
distance metrics

E2-51
Al

f B
Problem: 7
N

o > TH=7

TD=4
SL={E2-51, E3-55, E1-51, E4-55}
S0={0R, AND, SEQ}

THN=3

TD=2 SL={E2-S1, E

SL={E2-51, E3-55}
so={0R}

D=|TN,—TN,|+|TD, —TD,| +|TW,—TW,|+ DSL,, + DSO,;,

TN: total number of nodes

TD: tree depth, that is the number of levels from leaves to the top node
TW: tree width, that is the max number of operators at the same level
SL: set of leaf nodes SO: set of operator nodes

DSL ,, =card(SL,w SL,)—card(SL, "N SLy)

DSO,, =card(S0, U SO,) - card(SO, " SO,)

Flammini, F., Mazzocca, N., Pappalardo, A., Pragliola, C., Vittorini, V. Improving the dependability of distributed surveillance systems using diverse redundant detectors
(2015) Advances in Intelligent Systems and Computing, 307, pp. 35-53
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Example (1/3)

Intelligent Camera (S1) :: Fall of person (E1)
Intelligent Camera (S1) :: Abnormal running (E2)
Intelligent Camera (S2) :: Fall of person (E1)
Intelligent Camera (S2) :: Abnormal running (E2)
Audio sensor (S3) :: Scream (E3)

IMS/SAW detector (S4) :: CWA detection (E4)
IR detector (SS5) :: CWA detection (E4) Scenario B

Scenario A

A A
/ /' N ’
EI-IiI E?-!j' E1.52 Ezji :—%ﬂ

12 10

3 3

2 1

E1-S1, E2-S1, E1-S2, E2-S2, E3-S3, E4-S4, E4-S5 cardinality=7 E1-S1, E2-S1, E1-S2, E2-S2, E3-S3, E4-S4, E4-S5 cardinality=7
AND, ANY, SEQ, OR cardinality=4 SEQ, AND, ANY cardinality=3

D=12-10| +|3-3| + [2-1|+ 0+ 1=4
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Example (2/3)

Scenario C (aggression)

P

2
1
SL E1-S1, E2-S1, E1-S2, E2-S2, E3-S3, E5-S6 cardinality=6
SO

SEQ, ANY cardinality=2

v
o

Off-line distance computation (all trees available)

T
S

On-line distance computation (only ANY subtree available)
.~/ 8 |

E1-S1, E2-S1, E1-S2, E2-S2, E3-S3 cardinality=5
ANY, OR cardinality=2

(3]

1 _ANYA_ | ANY-B____| ANY.C |
ATN [
ASL 2

TD 1

2
9

ASO

0 W = N N
N — O = O

Linnaeus University



TEMPORAL CONSTRAINT 0 EVENTID
ANY PARAMETER 0 SENSORID
ALARM LEVEL 0 POD 0.0

Example (3/3) D=

Detector 1D Detector Description Event ID Event Description

Intellicent Camera El Fall of person 0.25
& E2 Abnormal running 0.20

S2 Tt G El Fall of person 0.25

E2 Abnormal running 0.20
S3 Audio Sensor E3 Scream 0.15
S4 IMS/SAW detector E4 CWA detection 0.30
S5 IR detector E4 CWA detection 0.27

| Date | Time |  EventID | Detector ID| Occurrence Nr
09:11:11 E4 S4 1
09:14:18 El S2 2
09:15:51 E3 S3 - . . WS-
09:16:00 E2 $2 s |

e Start Deteciion
01/04/2012 09:17:07 E4 S5 il eerr o e

Coponent Event Ocourrences Id: 2

Suspected Event with Id: 241 S1op Detecton
Detaction Time: 01/04/12 - 09:15:51
Alarm Reliability: 96 25%

Alarm Level: 2 a
Copronent Event Occurrences Id: 2 3 Reset

Suspected Event with Id: 241
Detection Time: 01/04/12 - 0%:16:00
Alarm Beliability: 80,00%

2larm Level: 1 Show graph of i sohecied event
Component Event Ocourrences Id: 4

Suspected Event with Id: 241 L 4

Detection Time: 01/04/12 - 03:16:00 Hack
Al=rm Beliahility: 97 ,00%

Alarm Lavel: 2

Component Event Occurrences Id: 3 4

Suspected Event with Id: 241
Detection Time: 01/04/12 - 09:17:07
Alarm Beliability: 31,20%

Alarm Lewel: 3

Comronent Event Ocourrences Id: 1 5

Detectad Event with Id: 241

H : : Detection Time: 01/04/12 - 0%:17:07
Alarm Lewvel: 4
Comronent Event Ococurvences Id: 3 4 1 5




Pr {Sprinkler | Rain = 1} = 0.01 Br (Rain) = 0.2

Bayesian Networks sprinkier j——( Rain

\/

A Bayesian Network (BN) (or “influence diagram™) is a & .
formalism suitable to model uncertainty. BNs are direct \ Grass | e
acyclic graphs in which nodes represent stochastic —
variables and arcs statistical dependencies between
variables, quantified by conditional probabilities
(Conditional Probability Tables, CPT)

Each node X 1s be associated with a probability distribution
given by all its parent nodes through the CPT.

This can be denoted as p(X | parents(x)). Following this
simplified explanation, an entire BN can then be
represented by a single joined probability distribution:

f‘ as

A
wwww
g o =3

p(Xq..X,)= p (Xi |parents (Xi))
=]

Eugene Charniak (1991), Bayesian networks without tears: making Bayesian networks more accessible to the probabilistically unsophisticated, Al Magazine, v.12 n.4, pp.50-63
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BN in DETECT
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From Event/Attack Trees to BN

—
{ START ‘
T root
Is there any Yes ‘ L, | ‘ Assign same Mark AT
unvisited - B > AT leaf probabity > leafnode A B c
root node
L AT leaf node I ‘ to new node as visited
AND
No l‘ /L)\
D E F G
Is there Yes | ‘
2 . any un_vrsﬁed Create lent > Compct '2 > mgglg‘rgd e
ATriddle BN node | ‘ BN root node a3 vistted
No l< Pr (D} Pr [E} r{F} Pr{G}
o~ e P —
7 7 ) /R 7
\ D ) { E ) (| F ) | @
Is there Yes J J \ y,
3. an unvisted Create equivalent Mark AT root \ _ \ _/ N/ o
AT root BN non-root node as visited
node ‘
_ |F=
Nolv } i:
1 |F=
Yes Pr
4 Is there Populate BN | Mark BN node PriA
. any g’;ﬂgﬂﬁffe" ‘ node CPT ”| as popuiated I;l {
r i
|A=0,B=0,C=0]=0
Pr{root|A=1,B=0,C=0}=1
No Prioot|[A=0,B=1,C=0)=1
Pr{oot|A=0,B=0,C=1}=1
Pr{rot|A=1,B=1,C=0}=1
Pr{oot|A=1,B=0,C=1}=1
FINISH Priroot|A=0,B=1,C=1}=1
\ PrimotiA=1R=1C=11=1
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How to populate BN models

Data collection on attacks, or other data collection techniques such as honey
pots and data harvested from simulations.
Probabilities are refined as more precise data is collected using ML techniques
applied to empirical evidence.
As an example of using historical data, a study published in 2017 by Symantec
Corporation titled the Internet Security Threat Report (ISTR):
- Email phishing rate is 1 in 2995 emails.
- Email malware rate is 1 in 412 emails.
- From more than 1 billion requests analysed every day, 1 in 13 web-requests
lead to malware.
- 76% of websites contain vulnerabilities, out of which 9% are critical
vulnerabilities.
- Out of 8718 vulnerabilities discovered in 2017, 4262 were zero-day
vulnerabilities.
This and similar data can be customized to a specific organization and updated
dynamically by counting the number of emails sent, websites accessed, etc.
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Example data

For instance, if you trust the above statement “Email phishing rate is 1 in 2995 emails”,
and in your organization you have 1200 emails sent at a certain time, then you can get
your custom value for the email phishing probability as:

1200 1
1= l_L <1 - 2995)

In this formula (1-1/2995) would be the probability of not having phishing in a single
email, whereas the production refers to the probability of not having phishing in any of
the 1200 emails (assuming they are not correlated). One minus the production is then
the probability of having phishing after 1200 emails.

In other words, it is possible to update in real-time that probability by counting the
number of emails received in the organization at any time. The same holds for the other
parameters like website access. The SIEM system can be configured to monitor those
parameters and provide updates to DETECT and hence to the BN detection model.
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Pr{0.24) Pr {0.08) Pr{0.02) Pr {0.08} Pr{0.03)

S User © User e e (et Boctis :
Example mOdel (2 i - = ) removablemeém os arrr.vl'lshs
‘ i (et spe ishing |

untrusted . malicious = infected with g

network website _ \ 4 . malware

UN MW l M w SPE
/ £ Usmg N\
Authentication Violation / Components |
| with known |
\_vulnerabili- /
KV '\, ties
Attacker gets TN /
access to internal Pr{EUV|KV=0}=0 /Exploitation of\
system Pr{EUV|KV=1}=08| unpatched |
\ vulnerability /
[ . ] EUV
Attacker installs Pr{0.03}
backdoor on i - B
target system | Exploitation of - B
XOR | zeroday / Attacker
. vulnerability installs \
\ backdoor on |
— : -* arget sty (501 08 20,50 2920
L L Y or -
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/ ."\_
Pr{AIC|BD=0}=0 ( A';a‘*e‘ 5::'3 \
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Data for the example model

Leaf node Identifyin Estimated
g probabilit
Acronvm /

Exploitation
of Zero-Day
Vulnerability

User Connects
to Untrusted
Network

User Accesses
Malicious
Website

User Connects
Infected
Removable
Media to the
System

User Accesses
Website
Infected with
Malware
User Opens
Spear
Phishing
Email

ZDV

MW

SPE

0.03

0.24

0.08

0.02

0.09

0.03

Possible Detection
Sensors

-Anomaly detection
based IDS

-User Level Endpoint
Monitoring

-IDS

-SSL Certificate
missing/rejected
-Netflow Analysis
-Firewall

-IDS

-SSL Certificate
missing/rejected
-Unexpected flow of
data

-IDS

-Antivirus

-System Event Logs

-IDS
-Web Browser Plugin

-Human
-User Level Endpoint
Monitoring

Acronvm Probability

Exploitation of
unpatched EUV 0.60
vulnerabili

Attacker installs
backdoor on target BD 0.85

system
Attacker gets
access to internal AIC 0.90

system
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Perturbation tests

Scenario 1: Perturbance Test Results for Leave Nodes
T

MW
Perturbance Value Results Value Results Value Results —m | 24 A
Percentage gv’E e /
23 e 4
1 19.6 4.5 18.6 1.5 19.5 _/’/
2f b -
15 19.8 6.75 19.2 2.25 19.7 >
s -~ E
1.6 19.8 7.2 19.4 2.4 19.7 E
1.8 19.8 8.1 19.6 2.7 19.8 g
2 19.9 9 19.9 3 19.9
18 -t -
2.2 19.9 9.9 20.2 33 20 ///
17 + /,/” -
2.4 20 10.8 20.4 3.6 20.1 /,.»--/
o 1
2.5 20 11.25 20.6 3.75 20.1 »/
15 Il 1 ! 1 1 1 Il Il 1
3 20.2 13.5 21.2 4.5 20.3 -50 -40 -30 20 -10 0 10 2 30 40 50
Perturbance [%]
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BN: design time vs run time

r-- - - - - - - Al B
run-time I design-time
@ | . 9 | Detection Layer
' |
| A
Monitored Monitoring
run time System System |
ReDlixen T, | Sensing Layer
| |
modeling : | : Iy
A4l feedback |
System
Dynamic Fuzzy Model | Event Layer
State |
T I
run-time | |
evidence |
run-ltlrr:e | design-time |
Sfalys | | analysis |
i I
Run-time |
Detection | Coifiis |
Probability | onfusion I
| I Matrix
|
I I
| |

Alarm on 2.273*10°5
Alarm off 0.999977
Alarm inactive 2.7%107

Alarm off
rue 0.995 (tp) 0.22%10 (fn) 0.9934 0.0066
- 0.9941 0.0059
0.5*10 (fp) 0.999978 (tp) 0.9938 0.0062

FLAMMINI F., Marrone S, Mazzocca N, Vittorini V (2016). Fuzzy decision fusion and multiformalism modeling in physical security monitoring. Recent
Advances in Computational Intelligence in Defence and Security. vol. 621, p. 71-100, BERLIN: Springer, doi: 10.1007/978-3-319-26450-9_4
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Follow us on...

Cyber-Physical Systems (CPS)

The CPS research group is responsible for research, teaching, and outreach activities in the field of Cyber-
Physical Systems.

The research of Cyber-Physical Systems addresses the close interactions and Contact
feedback loop between the embedded cyber components and the dynamic
physical components that invelve mechanical components, energy systems, u

human activities and surrounding emvironment.

Designing rvolves the consideration of multiple tactors such as timing,

energy, refiability, dependability and security. Experts from different disciplines

are needed to tackle the challenges on large scale analyl modeling and ~
analysis, efficient simulations, model driven synthesis and verification, real-time I
data analyfics and system control, etc.

The current research focuses on Francesco Flammini
SENIOR LECTURER
1. model-based design, synthesis and verification of CPS,
2. CPS dependabilit ity and privacy, . 46470708822
3. big data analytics for CPS, B francesco. flammini@inu se
4. cross-layer modeling and optimization for CPS, and
5. applications of CPS in smart energy systems and automotive systems, etc.
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Thank you for your kind attention!



