October 3, 2018

TLS 1.3 and Certificate Transparency

Rasmus Dahlberg

- 1.~ Secure communication and TLS ≤ 1.2
- 2. What's new in TLS 1.3 (and briefly why)
- 3. How CT makes TLS more robust

Disclaimer: expect little or no details on cryptographic primitives and attacks on TLS

What applications rely on these properties?

Source: "Deploying TLS 1.3: the great, the good and the bad" by Valsorda and Sullivan, 2016.

Two round-trips before sending any application data!

Key Exchange Authentication Cipher (algorithm strength mode) Mac or PRF

ECDHE-ECDSA-AES128-GCM-SHA256

Source: https://outspokenmedia.com/https/cipher-suites/

Are all cipher suites created equally?

- (EC)DH vs (EC)DHE?
- Static RSA vs (EC)DHE?
- MD5 vs SHA256?

- RC4 vs ChaCha20?
- 3DES vs AES?
- CBC vs GCM?

How hard can it be? (1/2)

Table	of Contents				
1.	Introduction				
2.	Attacks on TLS				
	2.1. SSL Stripping				
	2.2. STARTTLS Command Injection Attack (CVE-2011-0411)4				
	2.3. BEAST (CVE-2011-3389)				
	2.4. Padding Oracle Attacks4				
	2.5. Attacks on RC4				
	2.6. Compression Attacks: CRIME, TIME, and BREACH5				
	2.7. Certificate and RSA-Related Attacks5				
	2.8. Theft of RSA Private Keys				
	2.9. Diffie-Hellman Parameters6				
	2.10. Renegotiation (CVE-2009-3555)6				
	2.11. Triple Handshake (CVE-2014-1295)6				
	2.12. Virtual Host Confusion7				
	2.13. Denial of Service				
	2.14. Implementation Issues7				
	2.15. Usability				

Source: RFC 7457 by Sheffer et al., 2015.

The saga continues: FREAK, SLOTH, DROWN, ROBOT...

How hard can it be? (2/2)

Product	CVE ID	Issue source
OpenSSL	2013-4353, 2015-0206, 2014-[3567, 3512, 3569, 3508, 3470, 0198, 0160]	Memory management
	2015-0205, 2015-0204, 2014-3572, 2014-0224, 2014-3568, 2014-3511	State machine
	2014-8275	Certificate parsing
	2014-2234	Certificate validation
	2014-3509, 2010-5298	Shared mutable state
	2014-0076	Timing side-channel
	2014-3570	Wrong sqrt
GnuTLS	2014-8564, 2014-3465, 2014-3466	Memory management
	2014-1959, 2014-0092, 2009-5138	Certificate validation
NSS	2014-1544	Memory management
	2013-1740	State machine
	2014-1490	Shared mutable state
	2014-1569, 2014-1568	Certificate parsing
	2014-1492	Certificate validation
	2014-1491	DH param validation
SChannel	2014-6321	Memory management
Secure Transport	2014-1266	State machine
JSSE	2014-6593, 2014-0626	State machine
	2014-0625	Memory exhaustion
	2014-0411	Timing side-channel
Applications	2014-2734	Memory management
	2014-3694, 2014-0139, 2014-2522, 2014-8151, 2014-1263	Certificate validation
	2013-7373, 2014-0016, 2014-0017, 2013-7295	RNG seeding
Protocol-level	2014-1771, 2014-1295, 2014-6457	Triple handshake
	2014-3566	POODLE

Table 1: Vulnerabilities in TLS implementations in 2014.

Source: "Not-Quite-So-Broken TLS: Lessons in Re-Engineering a Security Protocol Specification and Implementation" by Kaloper-Meršinjak et al., 2015.

- Continuity
- Modern security analysis
- Clean up and simplicity
- Increased privacy & security
- Decreased latency

- Five good AEAD choices
- Hash function for HKDF
- Format: TLS_AEAD_HASH

+	+
Description	Value
TLS_AES_128_GCM_SHA256	{0x13,0x01}
TLS_AES_256_GCM_SHA384	{0x13,0x02}
TLS_CHACHA20_POLY1305_SHA256	{0x13,0x03}
TLS_AES_128_CCM_SHA256	{0x13,0x04}
TLS_AES_128_CCM_8_SHA256	{0x13,0x05}
*	

Source: RFC 8446 by Rescorla

No legacy ciphers or modes like MD5, RC4, 3DES, and CBC!

- **DHE**: ffdhe2048, ffdhe3072 (+3 more)
- **ECDHE**: secp256r1, x25519 (+3 more)
- **PSK**—replaces old ressumption mechanisms
- PSK + (EC)DHE

No static RSA, DH, or custom (EC)DHE groups!

- \rightarrow forward secrecy
- \rightarrow few well-selected defaults

Source: https: //ds055uzetaobb.cloudfront.net/image_optimizer/ a2a152fce89905aee9c0e051a0be8ea1d9b2c51c.jpg

What about authentication? Also selected orthogonally

- Modern signature schemes
 - ECDSA, EdDSA, RSASSA-PSS
- Authenticate entire handshake
- Client and server certificates?

Source: "Deploying TLS 1.3: the great, the good and the bad" by Valsorda and Sullivan, 2016.

How TLS 1.3 improves latency? 1-RTT

Source: "Deploying TLS 1.3: the great, the good and the bad" by Valsorda and Sullivan, 2016.

Predict negotiated parameters

HelloRetryRequest

How TLS 1.3 improves latency? 0-RTT

Source: "Deploying TLS 1.3: the great, the good and the bad" by Valsorda and Sullivan, 2016.

The bad news... Forward secrecy and replay protection for 0-RTT?

Nope.

0-RTT data must be idempotent

Complexity vs Functionality

TLS 1.2

- Resumed 0-RTT: inapplicable
- Resumed 1-RTT: never
- Non-resumed 2-RTT: sometimes

TLS 1.3

- Resumed 0-RTT: never
- Resumed 1-RTT: sometimes¹
- Non-resumed 1-RTT: always

¹PSK never, PSK+(EC)DHE always

- Increased handshake encryption
 - ► E.g., server certificate encrypted
- Removed compression
- Downgrade protection
- Fixed renegotiation
- New versioning mechanism
- ...and many minor differences

Source: https://commons.wikimedia.org/wiki/File: Williton_Highbridge_Nursery_topiary_garden.jpg

TLS 1.3:

- 'Fewer better choices'
- Mitigates past mistakes
- Use 0-RTT carefully

TLS relies on certificates to establish trust

- Signed identity-to-key bindings
- Who signs?
- Certificate Authorities (CAs)
- Problems? Ohh yes..

- Tamper-evident and append-only log
- Anyone can monitor the log for mis-issuance
- Anyone can audit that the log stays honest
 - Efficient consistency verification
 - Efficient inclusion verification
- Gossip, s.t., everybody sees the same log

Source: http: //www.certificate-transparency.org/what-is-ct

²Note that CT is not limited to certificates

Adoption status of CT amongst popular vendors

- Clients require at least two promises of log inclusion
- Logs are trusted until gossip-audit model hits deployment

Get involved—monitor the logs!

Home / Projects / Certificate Transparency Monitor

Certificate Transparency Monitor

Introduction

Certificate Transparency is a system for monitoring and auditing publicly-trusted SSL certificates. This website monitors Certificate Transparency log servers to check that they are behaving correctly.

Logs

Show:

🗏 Ceased logs 🗏 Frozen logs 🗉 Test logs 🖉 Logs for untrusted roots 🖉 Logs for redacted certificates 🖉 Logs for expired certificates

Log	URL	Newest verified STH timestamp (UTC)	Status		Uptime
Behind The Sofa	https://ct.flippo.io/behindthesofa	2018-10-02 11:19:31	A	Warning	99.28%
Cloudflare Cirrus	https://ct.cloudflare.com/logs/cirrus	2018-10-02 15:29:03	4	Good	99.97%

facebook	for develope	rs	Docs	Tools	Support	Q. Search developers.facebook.com	
Certificate	Transparency Mo	nitoring					
Certification lets you s potential	e Transparency is a earch for certificate ohishing attacks.	n open framew es issued for a	rork which he given domair	lps log, audit and subscri	t and monitor ibe to notificat	publicly-trusted TLS certificates on the Internet. This to lions from Facebook regarding new certificates and	ol
Search	Subscriptions						
sunet.	ie (Search					1

Enter an Identity (Domain Name, Organization Name, etc), a Certificate Fingerprint (SHA-1 or SHA-256) or a crt.sh ID:

(% = wildcard)

СТ

- Goal? Detect certificate mis-issuance
- How? Require logging of all certificates
- Trust? No, because we can verify
- Who? Many major players involved

Questions?

